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Abstract

Over the past several years, with increasing frequency,
supercomputers have been used for the direct dynamical
simulation of large populations (totalling thousands to
tens of thousands) of interacting visual cortical neurons.
The full simulations, which a researcher would choose to
carry out, are far beyond the capabilities of current or
presently anticipated supercomputers, and consequently
those simulations which have been implemented have ne-
cessitated major compromises. One sort of compromise
is to set an unrealistically low limit on the number of neu-
rons of a given population type. A second compromise is
to use an abbreviated neuron dynamics (“integrate-and-
fire” neuron model) rather than to use the full realistic
Hodgkin-Huxley type neuronal model which is available.
The difficulty and challenge here is the wide range of dif-
ferent time-scales which appear in the dynamics of each
of a large number of neurons.

With more ambitious future simulations in mind, we
have undertaken the computationally efficient reformu-
lation of the problem in terms of the dynamics of whole
neuronal sub-populations. We note that a set of neurons
of a given type may be represented in terms of an evolv-
ing “density” that is spread within the Hodgkin-Huxley
state-space which defines the dynamics of that neuron
type. That density’s evolution is described in detail by
a partial differential equation which in turn may be ef-
ficiently approximated by a small set of simple ordinary
differential equations. These equations also have a sim-
ple interpretation in terms of the underlying neuronal
dynamics.

Our method is a means to remove the high redundancy
which exists in a direct simulation of many similar neu-
rons, and to furnish instead a compressed type of repre-
sentation which is capable of undertaking more extensive
and more realistic simulations of visual cortex.

A. Introduction

There is good hope that neuroscience is approaching an
ability to study realistic models of parts of the cerebral
cortex. This expectation arises from the convergence
of three active scientific endeavors. The first is our ex-
panding quantitative knowledge of neuronal interconnec-
tions. The second is our maturing understanding, even
down to the level of macromolecules, of the biophysics
which underlies the dynamics of electrically interacting
nerve cells. Third is the current rapid growth of avail-
able computing power. Regarding the third endeavor, a
pessimist may point to the fact that realism in neural
simulation may demand the following of parallel activity
of tens of thousands of interacting neurons in a patch
of cortex; while each of these neurons talks to hundreds
or thousands of neighbors and exhibits essential time
scales which range from the sub-millisecond regime for
the progression of a nerve impulse, to several seconds in
the case of important low-frequency components in a vi-
sual stimulus. Such numbers seem to emphatically rule
out realistic direct simulation by any computer system
now projected. The comments here address this issue.
A nerve cell body is contained by a surrounding mem-
brane which is a good insulator and is so thin that it
endows the cell with a substantial electrical capacitance.
The rate at which voltage across this membrane changes
is proportional to the flow of transmembrane current and
is inversely proportional to the membrane capacitance:

dv/dt = (1/¢) I (V;m,h,n;s) . (1)

Present knowledge enables us to write out the right-
hand side explicitly.'!Here the dependence of I upon V'
is by Ohm’s law as currents flow through molecular ion-
selective channels whose conductances to sodium and
potassium currents are set by the parameters m,h,n.
Conduction by other ions (calcium, chloride) may be
governed by similar parameters. The voltage difference
is maintained by the down-gradient flows of ions whose
concentrations are different on the two sides of the mem-
brane (high potassium inside, high sodium outside). The



variable s in (1) indicates the response of the transmem-
brane current flow to signals from other neurons.

The variables m, h,n satisfy dynamical equations of
their own! which include a dependence on V. The time-
constants in these equations tend to be fast compared to
the capacitative relaxation time of the cell membrane. If
s is held fixed, the remaining variables tend to pursue a
limit-cycle in the 4-space of V,m, h,n. That limit-cycle
shows a slow rise in V followed by a much faster rise
followed by an abrupt drop, which high-speed feature is
the nerve impulse. Changing the input s changes the
location of the limit-cycle in 4-space and changes the
rate of nerve-impulse production.

B. Population Model

We may measure the system’s position on the limit cycle
by a variable x which ranges from 0 to 1 and repeats. Ex-
cept during the brief return of the nerve-impulse (which
we may put at x = 1), x may be interpreted as voltage
rescaled. We now ask what is the neuron’s dynamical
response to changes in the input s. Because m, h,n ad-
just with rapid time-constants, they will not be removed
much from their limit-cycle values, and (1) takes the
simplified form

de/dt = f(x,s), (2)

with the understanding that x returns to 0 upon achiev-
ing the value 1.

In the cortex we find whole sub-populations of simi-
lar neurons which respond to similar input but are dis-
tributed rather than synchronized on the firing cycle.
We may characterize the state of such a population by a
distribution density function P (x,t), around the firing
cycle. The way this density evolves in time is mandated
by equation (2); an easy exercise derives the dynamical
equation

oP 0
E*—a—x(f(x,S)P)- (3)
which is a particular case of the general relation

oP oJ
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Here J (z,t) is the “density current” and states the rate
at which members of the population are crossing the
point x toward larger values. A natural boundary con-
dition is

J(@=0)=J(@=1), (5)

so that each neuron which fires also returns. If we inte-
grate (4) over x, we see that (4) states that the popula-
tion size does not change with time.

The neuronal behavior remains largely intact if equa-
tion (2) above is specialized to the very simple form

dz/dt = —yx + s. (6)

If we regard = as voltage normalized by capacitance,
then here s is clearly electric current imposed from with-
out, while —vyz is the voltage-driven leakage current back
through the membrane, and 1/ is the “electrical time
constant” or “RC time” of the system, while x = 1 is the
“nerve-impulse firing threshold”. Equation (6) is some-
times called the “leaky” or “forgetful integrate-and-fire”
model?; it is a reasonable guide to the behavior of more
elaborate neuron models and it is currently used in direct
simulations of cortex, to relieve the massive requirement
of computation time.

At this point we can see that equation (3) suggests al-
ternative simulation techniques capable of sidestepping
the need for direct simulation of multitudinous dupli-
cate neurons. However first we must include one addi-
tional important biophysical effect, that of random in-
dependent fluctuations in the inputs of the population’s
member neurons. The effect of such fluctuations is to su-
perimpose on each neuron’s voltage time-course an addi-
tional “random walk” in voltage. The quantitative effect
of such a random walk upon the density function has
been addressed in statistical physics: it is manifested as
a “diffusion current” down the gradient of the popula-
tion density, so that the density current of equations (3),
(4) is modified by an additional term

J(z,t) = =D (z,s) (0P/0z) + f (x,s) P (7)
which gives for (4) the dynamical equation

orP 0 0

5 = 5a (D (z,s) Fre ($,S)> P. (8)

Here s is that part of the input signal - the “average
input” - which is common to all the neurons. In the
particular case of a population of forgetful integrate-and-

fire neurons (6) we have the explicit equation3,*?
oP 0] g

This equation requires two boundary conditions, one of
which is (5). For the second observe that in this model
we have squeezed the nerve impulse to a point at x =1
where a neuron proceeds with certainty to = = 0; this is
an absorbing boundary at which, by diffusion theory, we
must have

P(z=1)=0. (10)



C. Diffusion Coefficient

To see how the diffusion coefficient D may be evaluated
explicitly from the input fluctuations, we may compare
evaluations of (6) and (9) in the simple case where vy =
0. In (6) we assume a time-stationary fluctuating input
S (t) which has zero mean (that will set the average s in
(9) to zero as well) and whose autocorrelation is

c(r) = <S(t)§(t+7’)>, (11)

the average taken over the population. From (6) the
random variable z (t), starting from 0 at ¢t = 0, is

t

o (t) = /dt’§ (t) . (12)

0

We observe that if ¢ is large compared to a value of 7
which will make ¢ (7) in (11) drop close to zero then
by (12) z (t) is a sum of numerous similarly distributed
independent random variables, hence z (t) will have a
gaussian probability distribution. A centrally located
gaussian is fully characterized by the mean-square of its
variable, so from (12) we evaluate

)S()) (13)

dt’ / dre(r (/ dre(T) | t.
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Thus <$2> grows linearly with ¢, with a coefficient de-
pendent on the autocorrelation as shown. The approx-
imating step in (13) assumes as before that c(t' —t")
drops to zero when its argument exceeds a small frac-
tion of t. Now equation (9) with v = 0 and s = 0, and
with P (z,0) concentrated at x = 0, is a familiar ex-
ercise, whose solution is a gaussian which spreads with
time, whose mean-square is given by

(2% (t)) = 2Dt. (14)

By comparing (13) and (14) we see that

o0

D :% /dfc(f). (15)
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Work which appears above is discussed in various per-
spectives in refs.34°.

The stochastic input to each neuron, which gives rise
to the autocorrelation ¢(7), may arise from different
sources, among which there is not yet a clear enough
base of laboratory data to always choose one dominating
source. One sort of source is the variety of voltage inputs
which act independently on each cell, such as the “John-
son noise” which thermal fluctuations produce across the
electrically resistive membrane. Fluctuations also arise
because synaptic input to a neuron arrives as a fusil-
lade of discrete “shots”, b(t), released from the arrivals
of individual nerve impulses:

=) bt —tm), (16)

where if there are enough independent inputs then the
arrival times t,,, will be Poisson distributed. If the mean
arrival rate in (16) is A, then the autocorrelation which
results® is (reasonably)

oo

c(T):A/dtb(t)b(t+7) (17)

— 00

and the diffusion coefficient (15) becomes

:—)\ (/ Qb)) . (18)

Our input signal (16) above was a bit idealized by mak-
ing the “shots” all the same size. If their sizes have
a distribution® then the expressions above have a sim-
ple natural generalization. Clearly the presentation here
assumes that the input signal changes on a scale slow
compared to the shot-arrival rate. We might informally
average (16) over a moving time interval whose recipro-
cal is intermediate between the signal rate and the shot
arrival rate, to obtain

s(t) 2 A(b) 7dt'b (t) (19)

From this we note that D in (18) is proportional
(through \) to the size of the input signal.

D. Eigenfunction Analysis

These considerations lead to an alternative kind of sim-
ulation algorithm expressed directly in terms of sub-
populations of like neurons. The first steps are standard
steps in applied analysis. Equation (8) may be written



oP
S =Q)P (20)

and the operator @) of (8) has a set of eigenfunctions and
eigenvalues:

The euclidean space of smooth functions of = between 0
and 1 has a natural inner product

(%, ) = / dz 5. (22)

An operator such as ) above has an adjoint operator Q
which satisfies

(¥.Q0) = (Qv.9). (23)

Equations (8) and (22) - with integrations by parts -
show us that

A 0 0 0
Q:%D%Jrf(x,s)% (24)

with adjoint boundary conditions
$(0) = (1),d (0) /dx = 0. (25)

As an adjoint operator, Q has a set of adjoint eigenfunc-
tions which satisfy

Q&n = Anggn (26)

with the same eigenvalues as (). With appropriate choice
of normalization, the two sets of eigenfunctions are bi-
orthonormal:

(#ns 6m ) = urm: (27)

Above, the two operators @, Q, the eigenvalues \,,, and
the two sets of eigenfunctions ¢,,, ¢,, are functions of the
parameter s, with the exception that from (24), clearly

$o(z) =1, =0 (28)

solves (26).

E. Modal Reduction

The population density function may be expanded, at
any value of s, in the eigenfunctions of Q:

P(z,t) = am (1) $m (2,5) (29)
where the coefficients a,, are given by

O = (ém,P) . (30)

If the a,, (t) are on hand, we may use (29) to recover
P (x,t), and by (7) J (z,t) which at z = 0 is the popu-
lation’s firing rate of nerve-impulses.

From (30) we have (letting ¢, /s = ¢y, s)

= (0 Gp) + (P P) (31)
(@)« (%) (6o
=Y {(Anin, bm ) + (%) (Fns: %)}
= (5)an + (%) ;Mnm (5) am

where in the final step we have substituted

9n,
(E’ g/>m> = M,m (s) . (32)

Now the A, (s) and the M,,, (s) may be evaluated for
interpolation, once and for all, so that for specified s (¥)
(31) is a set of explicit ordinary differential equations for
the a, (t). These, in turn, explicitly evaluate P,J, and
the firing rate in the population.

Our hope and expectation of course is that a few terms
of (29) will serve, so only a few of the equations (31)
will have to be integrated. More detailed investigation
confirms that this is commonly true. In particular it
follows from (28) that not only

Ao = 0 but also 85)0/85 = 0 whence dag/dt = 0.
(33)

If we normalize P (z,0) to an integral of unity (as a
probability density) then (33) gives

ag (t) = 1. (34)

Since A\g = 0, ¢g (z,s) corresponds to the equilibrium
distribution of the population. If s(¢) changes slowly
(ds/dt small in (31) ), then as it changes the population
simply passes through a succession of equilibrium states
and simulation involving large subpopulations becomes
very tractable. The remaining equations of (31) serve
as corrections if faster time-scales are important in s (t).



If we specialize to @ (s) in equation (9), then for small
constant D we can obtain detailed analytic results for
An, and My, in equation (31). Equation (6) gives us a
transit time whose reciprocal (the firing rate) we may
call

fo=—7/s (zn (1 - g)) . (35)
In terms of this frequency the eigenvalues are of the form
A =i 27 (fo + Da(s)) -n — Db(s)-n? (36)

where a and b arise from solving the problem through
first order in D, and n runs through both positive and
negative integers. Also to lowest order

1 n
M (s) = (v/fo) +2mi(n —m)n — mc (5) (37)
(for n # m).
My (8) =2min fo-d(s). (38)

Referring back to equation (31) we see that the factor
—Dn? in (36) will cause strong damping as n becomes
large. (This is the familiar damping of diffusion at short
wavelengths.) Equation (37) decouples member equa-
tions of (31) which differ much in index. The eigen-
values (36) show that the system has some tendency to
“ring” with damped oscillations at low harmonics of the
passage-time frequency. This leads to the appearance of
complex numbers, with the result that computationally
it is natural to reorganize the equations (31) for

Ay = Qpp —+ Z-a/in and A_p = Qpp, — iain (39)

in coupled pairs of real equations for the real variables
Ay, a0d gy

F. Concluding Remarks

The analytic methodology just described may be applied
to the simulation of visual cortex, and clearly to other
sorts of cortex as well. In the most direct sort of simu-
lation, which features the dynamics of every neuron, the
neurons may be identified by type and by location, with
many neurons of each type falling within narrow bound-
aries surrounding any given location; such a collection
of nearby neurons constitute the sort of sub-population
discussed above, and their numerous sets of individual
dynamical equations may be replaced by a small set of
ordinary differential equations of the form (31) above.
Currently we are developing this methodology with a
computer program in which the equations (31) for one
sub-population may be exchanged for the much more la-
borious full simulation of that sub-population, in order
to verify the concurrence of the two sorts of computa-
tional results.
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